Deep sketch feature for cross-domain image retrieval
نویسندگان
چکیده
Deep learning has been proven be very effective for various image recognition tasks, e.g., image classification, semantic segmentation, image retrieval, shape classification etc. However, existing works on deep learning for image recognition mainly focus on either natural image data or binary shape data. In this paper, we show that deep convolutional neural networks (DCNN) is also suitable for cross-domain image recognition, i.e., using sketch as query to retrieve natural images in a large dataset. To solve this kind of cross-domain problem, we propose to train CNN jointly using image data and sketch data in a novel way. The learned deep feature is effective for cross-domain image retrieval using simple Euclidean distance on the learned feature can significantly outperform the previous state-of-the-arts. In addition, we find that pre-training and a feasible data-argumentation for DCNN can largely surpass human-level performance in the standard sketch classification benchmark.
منابع مشابه
Instance-Level Coupled Subspace Learning for Fine-Grained Sketch-Based Image Retrieval
Fine-grained sketch-based image retrieval (FG-SBIR) is a newly emerged topic in computer vision. The problem is challenging because in addition to bridging the sketch-photo domain gap, it also asks for instance-level discrimination within object categories. Most prior approaches focused on feature engineering and fine-grained ranking, yet neglected an important and central problem: how to estab...
متن کاملCross-domain Generative Learning for Fine-Grained Sketch-Based Image Retrieval
The key challenge for learning a fine-grained sketch-based image retrieval (FG-SBIR) model is to bridge the domain gap between photo and sketch. Existing models learn a deep joint embedding space with discriminative losses where a photo and a sketch can be compared. In this paper, we propose a novel discriminative-generative hybrid model by introducing a generative task of cross-domain image sy...
متن کاملA Radon-based Convolutional Neural Network for Medical Image Retrieval
Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known t...
متن کاملFreehand Sketch Recognition Using Deep Features
Freehand sketches often contain sparse visual detail. In spite of the sparsity, they are easily and consistently recognized by humans across cultures, languages and age groups. Therefore, analyzing such sparse sketches can aid our understanding of the neurocognitive processes involved in visual representation and recognition. In the recent past, Convolutional Neural Networks (CNNs) have emerged...
متن کاملSketch-a-Net that Beats Humans
Deep Neural Networks (DNNs) have recently outperformed traditional object recognition algorithms on multiple largescale datasets, such as ImageNet. However, the model trained on ImageNet fails on recognising the sketches, because the data source is dominated by photos and all kinds of sketches are roughly labelled as ‘cartoon’ rather than their own categorises (e.g., ‘cat’). Most of sketch reco...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurocomputing
دوره 207 شماره
صفحات -
تاریخ انتشار 2016